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Abstract 
Geometry updating for digital twins of buildings is a time-
consuming and manual task, resulting in poor progress 
monitoring and quality control during the construction 
stage. This paper reviews the state of the art in practice 
and research on spatial and visual data-based approaches 
for updating digital twin geometry of buildings. We draw 
novel key insights into the effectiveness, experiments, and 
limitations of seven classes of methods summarised from 
the most recent papers. Consequently, four core gaps in 
knowledge are investigated. Finally, a new geometry-
based object class hierarchy is derived to support 
geometry updating for maintaining digital twins in future 
directions. 

Introduction 
A Building Digital Twin (BDT) serves as a digital 
representation of a physical building that mirrors the 
building’s status and behaviour throughout its lifecycle 
from the design, construction to operation stages. 
Geometry updating of BDT can keep the product 
information of an asset up-to-date. A building refers to the 
structure comprised of connected object instances (e.g., 
walls, roofs, beams, columns, windows, doors, etc.) along 
with Mechanical, Electrical and Plumbing (MEP) systems 
(e.g., piping and duct systems, fire protection systems, 
etc.). Geometry updating refers to detecting building 
object instances from the on-site collected Spatial and 
Visual Data (SVD) at a given timestamp during the 
construction stage, then meshing the data and assigning it 
as a timestamped three-dimensional (3D) representation 
in the BDT. SVD refers to Point Cloud Data (PCD) as 
spatial data and images or video sequences as visual data 
that are acquired by terrestrial or mobile scanners and 
cameras. Additionally, the final as-designed file at the end 
of the design stage is marked as “Design Intent” (DI). It 
can assist the geometry updating of BDT during the 
construction stage and serve as a benchmark for 
evaluating the project performance. 

One of the greatest challenges faced by the Architecture, 
Engineering, and Construction (AEC) industry is poor 
project performance due to the lack of timely progress 
monitoring and quality control during the construction 
stage. It is estimated that only around 34% of large 
projects are delivered on budget and only about 37% of 
projects are completed on time (Countryman et al., 2020). 
Over 50% of construction companies have long 
experienced dealing with under-performing projects 
(Armstrong, 2015). AEC industry can benefit 
significantly from BDT applications, including up to a 
50% increase in productivity, 10% decline in schedules, 

and 80% reduction in rework (Fingland, 2019). 
Dynamically updating BDT geometry from SVD with the 
help of the DI is a core step for automating progress 
monitoring and quality control. This step will help 
provide the geometric discrepancy data between as-
designed and as-built geometry to measure progress and 
evaluate spatial quality during the construction stage. 

This paper aims to gain a contextual understanding of the 
state of practice in BDT geometry updating and 
investigate the state of research regarding building object 
instance detection in the environment of contrasting SVD-
borne and DI-borne geometry (SVD-vs-DI). We analysed 
three stages of BDT geometry updating and the current 
building object classification standards to deliver the core 
knowledge gaps and a new geometry-based object class 
hierarchy as the main contribution.    

State of Practice 
The evaluation of state-of-the-art applications from the 
perspective of updating BDT geometry can help to 
understand their limitations and guide the literature 
review. Based on the Scan-vs-BIM system developed by 
Bosché et al. (2015), the state of practice here is discussed 
based on three stages of BDT geometry updating:   
● DI geometry to SVD registration  
● SVD-vs-DI object instance detection 
● Object instance geometry capture and recording 

The purpose of the first stage is to ensure that the DI file 
(e.g., IFC file) and the as-built SVD can be registered into 
a common coordinate system to facilitate the comparison 
between the DI-borne geometry and the as-built status 
during the construction stage. The second stage contains 
PCD-vs-DI object instance detection and image-based 
object instance detection. The output data of this stage can 
be used to capture 3D geometry of object instances. The 
final stage converts the PCD as low-level digitised 3D 
data into high-level information-rich 3D formats (e.g., 3D 
surface mesh) to support progress monitoring and quality 
control. The following discusses the state of practice of 
three stages mentioned above in detail: 

The first stage is a commercially solved problem. The user 
needs to manually find at least three corresponding points 
both in the PCD and the DI geometry, then the software 
can automatically calculate the transition and rotation 
matrix to register the PCD against the DI. Another way to 
achieve PCD to DI geometry registration is to manually 
adjust origins and axes to make coordinate systems the 
same. Images can be registered by simulating the camera 
poses in the 3D DI geometry to capture 2D pictures. It 
requires the camera’s intrinsic and extrinsic parameters. 



 

As for the second stage, no commercial software can 
automatically detect as-built object instances and match 
them with as-designed models in the SVD-vs-DI 
environment. Some software can do clash detection 
between PCD and DI geometry, but they cannot focus on 
the instance level to detect and extract the whole 
individual component in the PCD. Figure 1 shows state-
of-the-art software classification for clash detection. The 
experiment using Faro As-Built for Revit for ISPRS 
benchmark TUB1 input data (Khoshelham et al., 2017) 
with the upper range clearance 50 mm took 22 minutes to 
complete clash detection on the desktop (Processor: AMD 
Ryzen 5 5600X 6-Core Processor; RAM: 32GB; GPU: 
AMD Radeon RX 6800). The result of 87 clashed 
elements contains over 90% unnecessary collisions such 
as noisy points of a part of an object instance. Therefore, 
clash detection cannot be directly used to match object 
instances for BDT geometry updating.  

Figure 1: Software classification for clash detection 

As for the third stage, no software can automatically 
capture and record the 3D geometry of as-built object 
instances from the PCD with the help of DI. By contrast, 
two commercial solutions named OpenSpace and 
Buildots can measure construction progress by capturing 
images with a hat-mounted 360° camera. The image data 
stream is then compared with the expected progress from 
the DI to update the progress situation. Buildots claims 
that it can also evaluate visual quality such as 
automatically detecting the wrong place of the as-built 
window in the image. Nevertheless, these two solutions 
only rely on visual inspections to detect quality related 
issues; they cannot update BDT geometry in 3D view. The 
updated 3D geometry is essential to evaluate spatial 
quality during construction. Meanwhile, some software 
can automatically extract or generate limited object 
classes only from the PCD without being guided by the 
DI. For example, EdgeWise can automatically detect and 
generate cylindrical pipe segments, round joints (e.g., 
elbows, reducers), and rectangular duct segments without 
any manual effort. However, it is designed for PCD-to-
BIM rather than PCD-vs-DI. It cannot help to distinguish 
which as-built object instance belongs to which DI 
instance. 

Besides the three stages discussed above, we also need to 
understand what object classes, as well as shape classes, 

exist in a typical building before updating its geometry in 
the BDT. Various classification systems have been 
developed by different nations and institutions during the 
last sixty years, such as Uniclass, UniFormat, and 
OmniClass (Afsari and Eastman, 2016). However, each 
standard has its own criteria, and all these existing 
classification systems are only function-oriented to 
support activities during the building’s lifecycle. They 
cannot be applied directly to facilitate updating BDT 
geometry at the current stage.    

Overall, to the best of our knowledge, there is no state-of-
practice solution that can automatically keep BDT 
geometry updated based on the DI during the construction 
stage to support project management. 

State of Research Overview 
The first and third stages elaborated above have been 
well-solved in different studies in recent years. Random 
Sample Consensus (RANSAC)-based plane extraction 
(Bosché, 2012; Bueno et al., 2018) and line extraction 
(Stojanovic et al., 2018; Kaiser et al., 2019) are core ideas 
to (semi-)automatically achieve coarse registration in the 
first stage, along with Iterative Closest Point (ICP) 
algorithm and its variants (e.g., progressive ICP, Go-ICP, 
etc.) (Tang et al., 2013; Yang et al., 2013) to achieve fine 
registration for more precise results. For the third stage, 
3D representation to convert the extracted points into 
high-level information-rich 3D formats has also been 
well-explored. Primitive shape-based methods (e.g., B-
Rep fitting) perform well in representing primitives such 
as cuboid and cylinder but cannot describe in full details 
of irregular object instances. By contrast, meshing 
(Abdelkader et al., 2020; Cheng et al., 2008; Kazhdan et 
al., 2006) is effective to generate detailed representations 
to retain more geometric properties of objects. Other 
mesh-based variants (Hong et al., 2017; Groueix et al., 
2018; Otoguro et al., 2018) have also been proposed 
recently to generate high-quality structured meshes for 
complex and deformable shapes. It should be noted that 
incomplete PCD (e.g., with holes or truncation) can lead 
to poor or wrong results of meshing. To this end, Rashidi 
and Brilakis (2016) summarised the methods for filling 
gaps in PCD to improve the performance of meshing. 

The second stage for updating BDT geometry has more 
space for researchers to explore, and thus is the main part 
of this review. Table 1 summarised the findings of 
investigated papers. Overall, SVD-vs-DI object instance 
detection is split into two categories based on 3D/2D data 
formats: PCD-vs-DI instance extraction and image-based 
instance extraction. As for the first category, PCD-vs-DI 
instance detection is comprised of three workflows (Liu 
et al., 2021) depending on the input data formats:  
● Workflow 1: comparing the as-built PCD with the 

as-designed PCD generated from the DI geometry. 
● Workflow 2: comparing the as-built PCD directly 

with the DI geometry. 



 

 

● Workflow 3: comparing the as-built mesh generated 
from the as-built PCD with the DI geometry. 

Workflow 1 requires generating the as-designed PCD 
from the DI geometry before detecting object instances in 
the as-built PCD. Each as-designed point can be 
calculated by projecting a scanning ray on the STL-format 
geometry (Bosché et al., 2014). Then, point-to-point  
comparison and Hough transform are two main methods 
used in this workflow for instance extraction. Workflow 
2 directly uses the DI geometry format (e.g., IFC, CAD, 
STL, etc.) to support instance extraction from the as-built 
PCD. The advantage is that it keeps more initial features 
of the DI geometry than Workflow 1. Feature-based 
methods, point-to-surface comparison, and RANSAC are 
three core methods in this workflow. Lastly, workflow 3 
requires generating meshes from the as-built PCD before 
detecting object instances with the DI geometry prior. 

Image-based instance detection as the second category is 
another way for construction progress monitoring and 
quality control. We tend to investigate the advanced 
methods (workflow 4: deep learning) in this field since 
2D images can be considered as auxiliary input data to 
support geometry updating. The next two sections will 
elaborate on the seven core methods from four workflows 
with experiments and limitations summarised in table 1. 

PCD-vs-DI Instance Detection 
Point-to-point comparison was first used to automatically 
retrieve 3D object instances in the as-built PCD by Bosché 
and Haas (2008). The retrieval rate 𝑅% is calculated by 
the ratio of the number of retrieved as-designed points to 
the total number of as-designed points. The threshold is 
set as 50% to assess the retrieval result. Initial 
experiments on small-scale datasets (4 columns and 1 
slab, each within 18,000 points) presented a robust result 
for the proof of concept. This method has then been 
applied to detect primary structural object classes (Turkan 
et al., 2012; Turkan et al., 2013), to track secondary and 
temporary structural object instances (Turkan et al., 2014) 
and to detect mechanical object classes (Bosché et al., 
2014) for progress monitoring at the construction stage. 
The method performed well in tracking the status of 
structural instances but produced high rates of false 
negative and false positive results when detecting 
mechanical instances with large spatial deviations (out of 
50 mm) against the DI. This problem cannot be avoided 
even by adding the surface normal vector as an additional 
rule to support instance detection.  

Hough transform performs well in shape detection in the 
complex environment with noise. It was first developed 
for line detection in a cluster of 2D noisy points (Duan et 
al., 2010). An edge point (𝑥$, 𝑦$) on the line in the image 

Categories Workflows Methods Existing Studies Experiments Core Limitations 

PCD-vs-DI 
instance 
detection 

As-built PCD vs 
As-designed PCD 

Point-to-
point 

comparison 

Bosché and Haas, 2008; 
Turkan et al., 2012; 
Turkan et al., 2013; 
Bosché et al., 2014; 
Turkan et al., 2014 

column, beam, slab, 
wall, cylindrical pipe, 

rectangular duct, 
formwork, scaffolding, 

shoring, rebar 

Fail to detect instances 
when the deviation of 
position > 50 mm 

Hough 
transform 

Ahmed et al., 2014; 
Bosché et al., 2015 

cylindrical pipe, round 
elbow 

Complex computation; 
Fail to detect highly 
occluded objects 

As-built PCD vs 
DI geometry 

Feature-
based 

method 

Kim et al., 2013; 
Kalasapudi et al., 2014; 
Gao et al., 2016 

wall, ceiling, column, 
beam, slab, rectangular 
duct, cylindrical pipe, 
round elbow/reducer 

As-built must be the 
same as as-designed; 
Require as-built without 
any occlusion and noise; 
Fail to detect glass-made 
or curved planes 

Point-to-
surface 

comparison 

Zhang and Arditi, 2013; 
Gao et al., 2016; Tran 
and Khoshelham, 2019 

column, wall, 
cylindrical pipe, round 
elbow, round reducer, 

rectangular duct 

Cannot extract all points 
corresponding to the 
object instance 

RANSAC 

Kim et al., 2016; 
Nguyen and Choi, 2018; 
Guo et al., 2020;  
Rausch and Haas, 2021 

precast slab, wall, 
cast-in-place footing, 
cylindrical pipe, duct, 

cable tray 

Only robust for 
primitive shapes 

As-built mesh vs 
DI geometry 

Mesh-
supported 
method 

Date et al., 2012;  
Kim et al., 2020 

cylindrical pipe, U-
shape round joint, wye 
joint, cross joint, slab, 
wall, beam, column 

Loss of Point 
information; Small and 
highly occluded 
instances may be missed  

Image-based 
instance 
detection 

Deep learning CNN & 
variants 

Czerniawski et al., 2020; 
Kufuor et al., 2021; 
Ying et al., 2019;  
Hou et al., 2020 

window, stairs, wall, 
elevator, duct, column, 
beam, slab, door, pipe, 
socket, switch, radiator 

Lack 3D data to reflect 
spatial information 

Table 1: Summary of the second stage for updating BDT geometry: SVD-vs-DI object instance detection 



 

space can be transformed in the parameter space. The 
edge line can then be detected if the corresponding lines 
in the parameter space cross the same point. A 2D Hough 
transform-based object instance detection method has 
been developed to extract cylindrical piping segments 
(Ahmed et al., 2014). A cluster of 3D point slices needs 
to be projected along with the estimated object normal 
orientation from the DI geometry before the 2D circle 
slices are determined by Hough transform. Then, the 
circle slices will be integrated to grow cylindrical pipe 
segments. Nevertheless, this method requires that the as-
built position and dimension of the object instance are the 
same as the DI geometry. Bosché et al. (2015) were 
inspired from this method and combined the point-to-
point comparison and Hough transform together to detect 
cylindrical MEP components. It overcomes the limitation 
from Bosché et al. (2014) on detecting out-of-place 
instances (within 2 meters) and can identify the instance 
completeness through detection. However, Hough 
transform is computationally complex. The method does 
not consider the effect of high occlusions and clutter (e.g., 
stuff in front of the instance) in the PCD. It assumes that 
the most cylindrical instances are built in the orthogonal 
direction, which leads to the methods with less robustness 
in complex environments.  

Feature-based method uses object features (e.g., position, 
scale, colour, etc.) to detect instances. A three feature-
based (Lalonde feature, orientation, and continuity) 
instance detection method has been developed to detect 
linear and surface instances to measure construction 
progress (Kim et al., 2013). This method is robust in the 
noisy environment but assumes that all object instances 
are constructed according to the DI. Similarly, a five 
feature-based method has been proposed to match object 
instances. The features include length, size, colour, 
orientation, and the number of connections with adjacent 
instances (Kalasapudi et al., 2014). This method was only 
tested for prefabricated pipe detection in an environment 
without any occlusion and clutter. A distribution-based 
method has been developed by computing the probability 
distribution of the geometric properties for both PCD and 
the DI file (Gao et al., 2016). However, this method 
requires the denoised PCD without any occlusion. All 
these feature-based methods cannot deal with the 
detection of glass-made object instances or curved planes.  

Point-to-surface comparison calculates the ratio of the 
overlapping area between the extracted points and the 
object instance from the DI (Zhang and Arditi, 2013; Gao 
et al., 2016). Tran and Khoshelham (2019) developed the 
surface coverage ratio calculation algorithm by using 
alpha shape reconstructed from the orthogonal projection 
of points to make the method more robust. The method 
has been used in the PCD-vs-DI instance detection 
including columns, walls, duct, and piping segments. 
However, this kind of method cannot extract all points 
corresponding to the instance when there are deviations 
between the PCD and DI geometry or in the PCD with 
high clutter. Also, the coverage ratio threshold needs to be 

manually set. The method will be invalid if the deviation 
of the as-built position or orientation exceeds this ratio 
threshold. 

RANSAC is more robust than all methods discussed 
above for detecting instances from the as-built PCD with 
over 50% of outliers based on the DI prior (Schnabel et 
al., 2007). RANSAC can detect and extract geometric 
primitives including planes, spheres, and cylinders from 
PCD. It has been applied to optimise the edge points 
extracted from as-built PCD to assess the quality of the 
precast slabs (Kim et al., 2016). It has also been employed 
with the normal-based region growing method and K-
Nearest Neighbours (KNN) to detect cylindrical pipe 
segments when the position and orientation of as-built 
instances differ from the DI (maximum orientation error 
7.5 ̊; maximum position error 35 mm) (Nguyen and Choi, 
2018). Similarly, Guo et al. (2020) used RANSAC to 
detect cuboid-shape instances and a variant of RANSAC 
named Maximum Likelihood Estimation Sample 
Consensus (MLESAC) to fit cylinder-shape pipes. 
Rausch and Haas (2021) also applied RANSAC for cast-
in-place footing detection. However, all RANSAC-based 
methods can only detect primitive-shape object instances 
such as cylindrical pipe segments (cylinders), rectangular 
duct segments (cuboids), and floors (planes). The object 
instances with moderate or complex shapes such as T-
shape pipe joints, cross-shape duct joints, heating 
terminals, and sprinklers cannot be detected directly. 
Also, the lack of a checking step may lead to false 
negative or false positive results when detecting instances 
with high clutter and occlusions. 

Mesh-supported method requires generating meshes from 
the as-built PCD before detecting instances with the DI 
prior. Spin image has been developed for 3D object 
instance detection from the mesh (Date et al., 2012). It is 
a data-level shape descriptor representing the surface of 
the instance by bilinear interpolation. The corresponding 
points in both as-built and as-designed meshes can be 
matched by comparing spin images. Kim et al. (2020) also 
generated a mesh from the sparse PCD to semi-
automatically detect instances for quantity calculation and 
progress monitoring at the construction stage. However, 
mesh generation requires downsampling PCD, resulting 
in a loss of information contained in the PCD. Spin image 
matching only investigates 20% to 50% of vertices, which 
means that small or highly occluded instances may be 
missed. Investigating all vertices may avoid this problem 
but leads to high computational complexity.  

Image-based Instance Detection 
Deep Learning (DL) is more competitive than the 
traditional machine learning pipeline to detect object 
instances from images in complex environments. The 
typical architecture of a Convolutional Neural Network 
(CNN) in DL is made up of three types of layers: the 
convolutional layer to abstract a feature map from the 
input image; the pooling layer to reduce the spatial size of 
convolved features and extract dominant features, and the 



 

fully connected layer to produce an output vector for 
classification (Zhao et al., 2019).   

Many methods based on well-designed CNN architecture 
have been developed to achieve building object instance 
detection from images. A method based on DeepLab 
(Chen et al., 2017) has been proposed to automatically 
segment RGB-D images into 13 building object classes 
(window, floor, stairs, wall, etc.) with 0.50 IoU 
(Czerniawski et al., 2020). The Faster R-CNN (Girshick, 
2015) uses the convolutional network to directly generate 
candidate regions. It has been applied to detect building 
electrical instances by training both RGB 360°  and 
standard images (Kufuor et al., 2021). However, this 
method can only locate the instance position with 
bounding box. Mask R-CNN is then used to determine the 
boundary of instances in images (Ying et al., 2019). 
Overall, R-CNN-based detection methods can achieve 
high accuracy (over 90%) but real-time performance is 
deficient. To this end, a deeply supervised object detector 
(DSOD) combing Faster R-CNN and YOLO (Redmon et 
al., 2016) has been developed to detect structural object 
instances in the real-time scenario (Hou et al., 2020). This 
method has higher detection precision and recall (average 
95%) and can be used to detect multiple instances in the 
complex construction environment, but it only performs 
well in detecting instances with primitive shapes. 

Discussion 
Four core gaps in knowledge have been identified based 
on the literature review regarding as-built object instance 
detection in the SVD-vs-DI environment. We do not yet 
know how to update BDT geometry in the following 
cases: 
● environments with high clutter and occlusions. For 

example, only a part of an instance’s surface is visible 
and captured by the scanner. Besides, other existing 
stuff can also cause occlusions during scanning.  

● when there are distinct deviations in terms of position, 
orientation, scale, and shape between the DI 
geometry and the as-built instances (e.g., axis 
deviation over 50 mm; angle deviation over 15 ̊). 

● when the instances built in non-primitive shapes. 
Cylinder and cuboid are the most prevalent primitive 
shapes used in construction. By contrast, other object 
types such as pipe joint, sprinkler, and light fixture 
are built in complex shapes, which are rarely detected 
by current methods.    

● when the instance is transparent. In such a case, it is 
difficult to represent glass-made windows by point 
clouds due to the light transmission. 

Meanwhile, the number of object classes in buildings can 
measure in the thousands, while most of them are rarely 
used. Object instance detection prioritising the top 
frequent object classes can significantly save time and 
reduce the cost of the BDT geometry updating, thus can 
serve progress monitoring and quality control better. 
Also, we previously concluded that the current object 
classification standards cannot be applied directly to 

support BDT geometry updating in the section of the state 
of practice. Therefore, we developed a new geometry-
based building object class hierarchy from the geometric 
perspective named Hudrokis Tree (H.T.) (Figure 2). The 
Hudrokis Tree is comprised of three categories from the 
building composition’s perspective: structural (S.), 
mechanical (M.), and electrical (E.). The structural 
category contains 4 primary object classes and 10 
enriched object classes. The mechanical category includes 
18 object classes from the plumbing, heating, and air 
conditioning systems and 4 object classes from the fire 
protection system. Similarly, the electrical category 
includes 12 object classes from the electrical supply, 3 
object classes from the transport system, and 4 object 
classes from the control system. The last two layers 
(leaves) guide the most possible geometric shapes for 
each object class which can be used in the geometry 
updating work.  

The Hudrokis Tree meets two core requirements that 
make it more applicable than existing classification 
standards: 1) It contains all common building object types 
of interest to the design, construction, and operation 
stages. Any non-visible object types such as foundations, 
piles, and ground beams are not included in the Hudrokis 
Tree since they are out of scope given that they are not 
visible in SVD. 2) It is a shape-oriented classification 
hierarchy. Also, this tree merged some object types with 
different functions but the same shape class into one 
object class. For example, we merged duct, piping, and 
drain segments into one segment class named “plumbing 
segment” since all these object types only have two 
geometry classes in practice: cylinder and cuboid. 
Overall, Hudrokis Tree is the prerequisite for ranking the 
top frequent object classes in a typical building and is 
considered as a general guide employed for the BDT 
geometry generating and updating in the future. 

Conclusion 
Buildings are not static; BDT endows them with dynamic 
characteristics. Structural, mechanical, and electrical 
components work together to build product information 
for BDT through the design, construction, operation and 
renovation stages. Keeping BDT dynamic by updating its 
geometry can facilitate progress monitoring and quality 
control, and thus support project management. PCD is 
widely used to extract 3D information in BDT geometry 
updating in decade years, but the main gaps mentioned 
before still need to be solved. Image-based methods are 
more capable of progress monitoring rather than quality 
control since it lacks 3D semantic information of as-built 
object instances. Combining PCD with images to develop 
hybrid methods can be one of the future directions to 
overcome challenges. Employing and developing 
machine learning and CNN-based methods can fasten the 
automation level of updating. Meanwhile, Hudrokis Tree 
can be used as a classification guide to facilitate 
generating and updating BDT geometry at any building 
lifecycle stages.  



 

 Figure 2: New geometry-based building object class hierarchy – Hudrokis Tree (H.T.) 
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