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A B S T R A C T   

The lack of timely progress monitoring and quality control contributes to cost-escalation, lowering of produc-
tivity, and broadly poor project performance. This paper addressed the challenge of high-precision structural 
instance segmentation from point clouds by leveraging as-designed IFC models in Scan-vs-BIM contexts. We 
proposed an automatic method to segment the entire points corresponding to the as-designed instance. The 
workflow contains: 1) Instance descriptor generation; 2) PROSAC-based shape detection; 3) DBSCAN-based 
cluster optimization. The method matches design-intent planar, curved, and linear structural instances in com-
plex scenarios including: 1) the as-built point cloud is noisy with high occlusions and clutter; 2) deviations 
between as-built instances and as-designed models in terms of position, orientation, and scale; 3) both 
Manhattan-World and non-Manhattan-World instances. The experimental results from five diverse real-world 
datasets showed excellent performance with mPrecision 0.962, mRecall 0.934, and mIoU 0.914. Bench-
marking against state-of-the-art methods showed that the proposed method outperforms all existing ones.   

1. Introduction 

This research is about matching design-intent planar, curved, and 
linear structural objects in point clouds to maintain geometric building 
Digital Twins (DTs). By matching, we refer here to detect and segment 
object instances from point clouds into point clusters. By Design Intent 
(DI), we refer here to the client-approved, final as-designed model used 
as a benchmark at the construction stage [55]. In this paper, we focus on 
Industry Foundation Classes (IFC) models that serve as a standardised 
digital description of buildings [56]. By planar, curved, and linear 
structural objects, we refer here to the top frequent structural object 
classes ranked by [1], namely, planar and curved walls, slabs including 
floors and ceilings, beams, and columns. By point clouds, we refer here 
to data sets with millions of points made of XYZ coordinates [57]. By 
maintaining, we refer here to keeping DT’s geometry dynamically 
updated with the assistance of DI to reflect the as-is statuses of a building 
at different timestamps during the construction stage [1]. By a geometric 
building DT, we refer here to a product information repository for 
storing and sharing physical and functional properties of a building over 
time with all Architectural, Engineering, and Construction (AEC) 
stakeholders throughout its lifecycle [2]. A DT differs from a Building 
Information Model (BIM). A BIM only provides product information and 

can be updated at various timestamps throughout the life cycle of a DT 
[1]. By Scan-vs-BIM, we refer here to a process system that aligns 
scanned Point Cloud Data (PCD) with as-designed BIM models to 
compare and recognize object instances to support construction progress 
monitoring and quality control [3]. 

The lack of timely progress monitoring and prompt quality control 
are two of the problems plaguing current building construction projects, 
leading to poor construction project performance [58]. Over 50% of 
construction companies have suffered one or more underperforming 
projects in recent years [63]. Only a quarter of construction projects 
managed to stay within 10% of their initially planned deadlines [63]. 
Many construction projects exceed their budget. Specifically, 69% sur-
pass their budget by over 10%, while only 31% stay within 10% of their 
initial estimate [62]. Executing large projects on time and within budget 
is typically a challenge for the construction business [4]. The con-
struction industry continues to be one of the least digitised industries in 
comparison to media, finance, and other industries [59]. The AEC in-
dustry can benefit from digital technologies, including BIM and DT, with 
up to a 50% boost in field efficiency, a 10% acceleration in timelines, 
and an 80% decrease in modifications [61]. It is essential to digitise and 
automate the design, construction, operation, and refurbishment of 
buildings to enhance their efficiency and performance with the help of 
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DTs [58,60]. 
Using a DT to facilitate building progress monitoring and quality 

control still lacks automation in the current state of practice, leading to 
delayed feedback. For example, state-of-the-art commercial products, 
such as OpenSpace [64] and Buildots [65], enable image comparison 
methods to support progress monitoring. For this to be possible, a 
worker needs to wear a helmet equipped with a 360◦ camera and move 
around a construction site to record a video. Then, this two-dimensional 
(2D) data stream is compared with the DI to update the status of the 
project. However, these systems only enable visual inspections and 
cannot directly update three-dimensional (3D) geometric data. For 
example, they cannot retrieve the thickness of a wall or a window 
directly from images. Also, manual effort is still required for quality 
monitoring and control. In summary, the available commercial products 
fall short of the high demand for a higher degree of automation and level 
of resolution in the maintenance of a geometric building DT at different 
timestamps during the construction stage. 

Three stages are required for maintaining a building geometric DT 
[4]: 1) As-designed BIM model to scanned PCD registration ensures that 
the DI model (e.g., IFC model) is aligned with the as-built PCD into the 
same coordinate system. 2) Matching DI object instances in the as-built 
PCD aims to detect and segment instances from the PCD with the help of 
the DI. 3) 3D representation from the extracted PCD converts the points 
into information-rich meshes and updates the meshes into the DT. The 
goal of the first stage is to determine the rigid transformation matrix to 
align BIM with PCD and it has been well studied. Random Sample 
Consensus (RANSAC)-based [82] methods are commonly used to (semi-) 
automate coarse registration [5–8]. Fine registration is always applied 
after coarse registration to obtain a more accurate result and most well- 
established methods were derived from the Iterative Closest Point (ICP) 
algorithm [9–12]. Software including Recap and CloudCompare are also 
capable of registration in practice. However, the second step is more 
complex and time-consuming than the first step. The current research 
including mapping points to the model’s surface [21–26,75] and 
RANSAC-based shape extraction [28,29,77–81] still have limitations in 
real and complex environments. The comprehensive literature review 
towards this stage will be conducted in Section 2 Background. Finally, 
the third stage has also been well-explored. The methods of mesh 
reconstruction developed by [66,67] are effective in generating detailed 
representations from PCD. Rashidi and Brilakis [68] also summarised 
the methods for filling gaps in PCD, which can be used to improve the 
performance of meshing. 

In this paper, we focus on the second stage and propose an innova-
tive, robust method to automatically detect and segment top frequent 
building structural objects from PCD with the assistance of DI in a real, 
complex context. The selected structural objects are built in planar, 
curved, and linear shapes. We need to detect and segment as-built in-
stances before creating and assigning as-built meshes to a geometric DT 
to keep it updated. Keeping the geometry updated can help monitor the 
progress and control the quality at different timestamps during the 
construction stage. This paper highlights the following contributions in 
particular:  

1. In the Scan-vs-BIM system, many existing approaches only focus on 
object detection to monitor the construction progress. However, the 
proposed method herein can not only detect but also segment in-
stances from PCD to offer the entire points corresponding to the in-
stances, where the whole extracted point cluster can help with 
quality assurance during the building construction stage. 

2. Our proposed method is robust on the real, noisy PCD with signifi-
cant occlusions and clutter, as opposed to most present methods 
which are only proven on synthetic or simple datasets that are clean 
and complete. For instance, temporarily stored building materials or 
workers moving in front of a wall may be scanned into the PCD as 
noisy points to occlude the wall; using current approaches may result 

in inadequate or irrelevant point extraction, which cannot accurately 
depict the as-built geometry. 

3. Our proposed method can be used in more complex and real envi-
ronments where there are distinct deviations in position, orientation, 
and scale between the DI geometry and the as-built instances, in 
contrast to most state-of-the-art Scan-vs-BIM methods that fully 
depend on the DI to detect or segment object instances from PCD. 
Our method supports progress monitoring and quality control in the 
real world by leveraging the DI model without being fully dependent 
on it. 

4. While most of the current methods only focus on cuboid or cylin-
drical objects, our proposed method is designed for the most frequent 
structural objects in various shapes including planar, curved, and 
linear shapes.  

5. While most of the current methods only focus on Manhattan-World 
buildings, our proposed method can also deal with non-Manhattan- 
World multi-storey buildings. For example, the proposed method is 
also robust when walls are not aligned with a horizontal axis, or 
when walls are curved. 

The rest of this paper is organised as follows: the background, 
including the literature review, gaps in knowledge, and objectives, is 
reviewed in Section 2; the proposed method, including the workflow, 
the details, and the pseudo-code, is introduced in Section 3; the exper-
iments and results are shown in Section 4; discussion and conclusions 
are provided in Sections 5 and 6. 

2. Background 

In this paper, we focus on the advancements in instance matching in 
the Scan-vs-BIM context. We aim to detect and segment the structural 
object instances from PCD by leveraging the DI models. This is a crucial 
step as the second stage in the maintenance of a building’s geometric DT. 
The state of research, including instance detection and segmentation, 
data fitting and clustering, IFC schema, and object descriptor, is dis-
cussed in detail in the following subsections before the knowledge gaps 
and research objectives are summarised. 

2.1. Instance detection and segmentation 

Object detection refers to identifying the location and class of each 
object instance while object segmentation refers to cutting the whole 
PCD down to the object instance level. They are crucial steps to generate 
and update a DT in a 3D environment for many applications, including 
construction project management and heritage building operation. 
Structural object detection and segmentation focus on walls, slabs, col-
umns, and beams in buildings. 

In Scan-vs-BIM, we investigated five types of methods for instance 
detection and segmentation: point-to-point, Hough transform, point-to- 
surface, feature-based, and RANSAC-based methods. Point-to-point 
matching was initially developed by [17] to detect points correspond-
ing to a DI instance in the scanned PCD. The performance was evaluated 
by calculating the ratio of retrieved as-designed points to the total 
number of as-designed points. The threshold ratio was set as 50% to 
assess the retrieval result on small-scale datasets (4 columns and 1 slab, 
each within 18,000 points). This method was then adopted to monitor 
the progress of construction projects, by detecting primary and tempo-
rary structural objects [18–20] and mechanical objects [3]. In [70], the 
authors also applied the point-to-point method for automatic deviation 
detection for columns and beams. This method performs well in tracking 
the existing status of objects when there are few deviations between the 
as-designed and the as-built. However, since the retrieval result fully 
depends on the threshold value setting, the false-negative results will 
increase when the as-built objects have large spatial deviations against 
the DI. Also, the false positive will occur if part of another instance is at 
the same location with the covered points exceeding the threshold. 
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Hough transform [71] maps edge points in image space to parameter 
space for shape detection. It performs well in line and circle detection 
with outliers. In [72,73], the authors applied 2D Hough transform by 
projecting resampled 3D points into circle slices via the normal orien-
tation to detect cylindrical pipes. However, its application demands a 
consistent as-built position and dimension with the DI geometry. In 
[74], the authors enhanced this approach by incorporating point-to- 
point comparison to detect out-of-pace instances and identify the 
instance completeness. Still, the Hough transform suffers from high 
storage and computational costs, struggles with high occlusions, and 
presumes predominant orthogonality in cylindrical object instances, 
making it less robust in complex environments. The third type of 
method, point-to-surface matching, computes the overlapping area be-
tween the PCD and the model directly, as demonstrated by [21,22]. It is 
also used for deviation analysis between the DI and the as-built objects 
[75]. In [23], the authors improved the method by developing a surface 
coverage ratio calculation algorithm using alpha shape reconstruction. 
Other researchers used Euclidean distance to determine the nearest 
point to the model’s surface for instance detection [24–26]. However, 
this method struggles to recognize all object points in cluttered PCDs or 
when the PCD and DI geometry deviate significantly. Their validity is 
compromised if as-built deviations surpass a manually set coverage 
ratio. A further approach takes advantage of an object’s features, such as 
position, size, normal, and continuity, for instance detection. In [27], the 
authors used Lalonde, orientation, and continuity to identify instances, 
but the method presupposes all instances are DI-compliant. In [76], the 
authors used five features including length, size, colour, orientation, and 
the number of connections with adjacent object instances to test the 
prefabricated pipes in an environment without any occlusion and 
clutter. In [54], the authors developed a 3D eigenvector-based shape 
descriptor using voxels for point cluster matching, but this method re-
quires the PCD has few occlusions and clutter. In [15], the authors used 
the eigenvalues and shape histograms of the PCD for cluster matching, 
yet this method primarily localises different point clusters without 
yielding precising instance segmentation results. In [22], the authors 
computed the probability distribution of the PCD and the model’s geo-
metric attributes to match objects, but this requires the denoised PCD 
without any occlusion. All these methods may not work effectively when 
the PCD deviates from the DI geometry or when the PCD is cluttered 
significantly. On the other hand, RANSAC-based methods have been 
demonstrated to be more effective in instance segmentation in the Scan- 
vs-BIM context [77]. In [78], the author applied RANSAC to optimize 
the edge points for quality assurance of the full-scale precast concrete 
slabs. In [79], the authors used a normal-based region growing method 
with RANSAC to detect cylindrical pipes when the position and orien-
tation of the as-built differ from the DI. In [28,29], the authors applied 
RANSAC and its variant (MLESAC) to segment cuboid-shaped instances 
and cast-in-place footing. In [80], the authors applied PCA to estimate 
the normal vector from PCD and RANSAC to estimate planes with 
different orientations. However, the experimental data is a separate 
bathroom and an office room with no connected spaces. It is difficult to 
identify instances after plane extraction for multi-space buildings. In 
[81], the authors proposed a slicing method with RANSAC for curved 
façade and window extraction from PCD. RANSAC-based methods pri-
marily detect primitive shapes like cylinders and planes but struggle 
with complex structures like T-shaped joints or sprinklers. Additionally, 
the absence of verification or optimization steps can result in inaccur-
acies in cluttered and occluded environments. Overall, Table 1 sum-
marises the five types of methods and highlights the common limitations 
of these state-of-the-art (SOTA) methods. 

In the relevant area of Scan-to-BIM, deep learning has been widely 
used for semantic and instance segmentations. Semantic segmentation 
aims to assign a semantic label to each point in PCD, where points with 
the same semantic label belong to the same category. Instance seg-
mentation, on the other hand, involves identifying and segmenting in-
dividual object instances with a unique label assigned. Scan-to-BIM aims 

to convert PCD into a BIM representation, which is pivotal when a pre- 
existing BIM of a building is absent. Scan-to-BIM methods are widely 
employed for retrofitting projects, historic preservation, and facility 
management. It can be a foundational step for Scan-vs-BIM by creating a 
digital representation of a building. This digital model can then be 
compared against an updated PCD to support progress monitoring and 
quality control during construction. Many networks have been devel-
oped to solve the semantic segmentation problem in the Scan-to-BIM 
context without support from DI models. PointNet [30] was the first 
network proposed for processing points in the point cloud. Its key 
principle is to learn a permutation invariant function that maps an un-
ordered set of points to a fixed-size feature vector. In [31], the authors 
developed an end-to-end trainable multi-view aggregation model by 
merging features from images into 3D points. The method is robust for 
large-scale indoor or outdoor semantic segmentation on the S3DIS 
benchmark (Stanford 3D Indoor Scene Dataset). In [32], the authors 
proposed a new window-normalization method by unifying the point 
densities in different parts to improve the segmentation performance. As 
for instance segmentation, PointCNN [33] was first proposed to segment 
points by computing a feature transformation matrix based on local 
geometric information of neighbouring points. Tables 2 and 3 summa-
rise the performance of the SOTA deep-learning models for semantic and 
instance segmentation. The SOTA model can only achieve around 77% 
mean Intersection over Union (mIoU) for semantic segmentation, and 
around 75% mean Precision (mPrec) and 72% mean Recall (mRec) 
separately for instance segmentation. These numbers show that the 
current SOTA algorithms cannot be directly applied to support con-
struction management due to their relatively lower accuracy level. 
Higher precision and recall are necessary to support quality control in 
construction. Elevated precision in instance segmentation is imperative 
to minimize the inclusion of extraneous points, while enhanced recall 
ensures comprehensive retrieval of relevant points correlating with the 
model. Consequently, the segmented point cluster can exhibit superior 
efficacy in representing the current state of a given instance. In [34], the 
authors combined deep learning and void-growing approaches together 
to create digital twins of Manhattan-world buildings with a higher 
mIoU. Although Scan-to-BIM methods are versatile to support progress 
monitoring and quality control, some additional steps are still required. 
For example, a new BIM needs to be created regularly from the updated 
PCD to support comparison between two BIMs at different timestamps. 
Therefore, Scan-to-BIM methods cannot be directly adopted to support 
progress monitoring and quality control due to the lack of matching 
results between DI and PCD. 

In conclusion, structural object detection and segmentation in PCD is 
a rapidly growing field with significant potential for a wide range of 
applications. However, current SOTA methods for Scan-vs-BIM have 
common limitations (Table 1) that prevent them from being used on 

Table 1 
Instance detection and segmentation methods and their limitations in Scan-vs- 
BIM.  

Method Reference Common limitations 

Point-to-Point [3,17–20,70] sensitive to the threshold value setting 
Hough transform [72–74] high storage and computational costs 
Point-to-Surface [21–26,75] few deviations between PCD and DI 
Feature-based [15,22,27,54,76] PCD with few occlusions and clutter 
RANSAC-based [28,29,77–81] object instances with primitive shapes  

Table 2 
SOTA deep-learning semantic segmentation evaluated on S3DIS.  

Model mIoU Reference 

WindowNorm+StratifiedTransformer 0.776 [32] 
PointMetaBase-XXL 0.770 [35] 
PointNeXt-XL 0.749 [36] 
PointNet 0.476 [30]  
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large-scale real-world applications. Despite the limitations and chal-
lenges that currently exist, ongoing research aimed at improving the 
performance and versatility of Scan-vs-BIM methods will likely result in 
continued advancements in this area. 

2.2. Other data fitting and clustering methods 

Besides RANSAC, its derivatives are widely used for dealing with 
situations where the underlying dataset contains a substantial number of 
outliers while attempting to estimate model parameters. These de-
rivatives are applied to fit shapes and detect instances in PCD as model- 
driven algorithms. M-estimator Sample Consensus (MSAC) [83] mini-
mizes a cost function that exhibits reduced sensitivity to outliers. In 
[41,84,85], the authors applied MSAC to extract planes for PCD seg-
mentation. MSAC allows for a more seamless transition between inliers 
and outliers when compared to the rigid threshold in RANSAC, which 
leads to better performance when there is no clear-cut difference be-
tween inliers and outliers. Nevertheless, MSAC is computationally more 
demanding than RANSAC. Maximum Likelihood Estimation Sample 
Consensus (MLESAC) [83] estimates the model parameters that maxi-
mize the likelihood, assuming that the noise is Gaussian and that the 
outliers are uniformly distributed. In [43], the authors developed a 
Prior-MLESAC algorithm to extract both vertical and non-vertical planar 
and cylindrical structures. In [86], the authors applied MLESAC to fit 
surface primitives in PCD. MLESAC provides a more statistically 
rigorous estimation than RANSAC but requires an accurate estimation of 
the inlier ratio, which is not always available. Also, the assumption of 
uniformly distributed outliers may not hold in all cases. In [87], the 
authors proposed an outlier detection in PCD by getting maximum 
consistency with minimum distance (MCMD). The method is faster and 
more efficient in detecting planes by estimating consistent normal vec-
tors. Another RANSAC variant named Progressive Sample Consensus 
(PROSAC) was proposed to exploit the linear ordering defined on the set 
of correspondences by a similarity function used in establishing tenta-
tive correspondences [42]. It capitalizes on the concept of assigning a 
likelihood to data points being inliers and arranges them in this order. 
This can improve the speed of the process and the robustness of the 
result by gradually decreasing the sample size, especially for datasets 
with a large number of noise or outliers. In [43], the experiments 
showed that PROSAC is more robust to the data with more outliers than 
RANSAC and MLESAC while processing time is less than Prior-MLESAC. 

Clustering in PCD refers to the grouping of spatially or geometrically 
similar points into distinct subsets, aiding in data segmentation and 
feature extraction. K-means [88] is a partitioning method that clusters 
the points into K number of centroids. It is simple and efficient but re-
quires the number of clusters to be pre-specified. Mean Shift [89] is a 
non-parametric, iterative clustering algorithm used primarily for mode 
seeking and data clustering. It can find clusters of any shape, but all 
points will gravitate towards cluster centres even for outliers. Agglom-
erative Clustering [90] is a hierarchical clustering method that starts 
with each data point as an individual cluster and successively merges the 
closest clusters until only one cluster remains or a specified stopping 
criterion is met. However, this method does not explicitly handle out-
liers and can be computationally expensive for large datasets. On the 
other hand, Density-based Spatial Clustering of Application with Noise 
(DBSCAN) is an unsupervised 3D data clustering algorithm that groups 
together the points that are close to each other based on a density 

criterion [44]. The algorithm can identify clusters of arbitrary shapes 
and noise points that do not belong to any cluster. The algorithm works 
by defining two parameters: a threshold for the number of neighbours, 
minPts, and a radius, Eps, to measure an arbitrary distance. Given a set of 
data points, DBSCAN begins by randomly selecting a point and exam-
ining all other points within a distance of Eps from that point. If there are 
at least minPts points within that radius, a new cluster is formed. In [45], 
the authors used DBSCAN for boundary detection for PCD. One of the 
advantages of DBSCAN is that it does not require specifying the number 
of clusters in advance, unlike many other clustering algorithms such as 
k-means. Another advantage of DBSCAN is that it can handle clusters of 
different shapes and sizes, and it is also robust to noise and outliers in the 
dataset. However, it struggles with separating clusters with varying 
densities. HDBSCAN [91] is an extension of DBSCAN that can find 
clusters of varying densities. Instead of working with a single radius, 
HDBSCAN constructs a hierarchy of clusters and then extracts flat 
clusters from this hierarchy, but it is more computationally intensive. 

2.3. IFC and object descriptor 

Industrial Foundation Classes (IFC) is a schema and an open standard 
used in the AEC industry for representing and exchanging building and 
construction data among various software applications. It defines a 
standardised data structure for building information, including infor-
mation about the building’s geometry, spatial relationships, and prop-
erties of building elements, such as walls, floors, doors, and windows. 
Many applications including quantity take-off [46], model code 
compliance checking [47], and energy simulations [48] can be done by 
IFC models. An IFC model follows a top-down hierarchy to express the 
properties of a building’s structural, mechanical, and electrical objects. 
Generally, it contains an object’s ID label (GUID), dimension (IfcBoun-
dingBox), location (IfcObjectPlacement), material properties (IfcMaterial), 
connection relationships (IfcRelConnectsPathElements), and space re-
lationships (IfcRelSpaceBoundary), which can be employed for matching 
DI structural object instances in PCD in our proposed solution. 

The concept of object descriptor is widely used in computer vision- 
based fields. It refers to a set of attributes or characteristics that can 
be used to identify or classify an object. In [93], the authors evaluated 
five SOTA 3D descriptors for object recognition, including local de-
scriptors for instance recognition, and global descriptors for classifica-
tion. Specifically, spin image [94], Signature of Histograms of 
Orientations (SHOT) [95], and Unique Shape Context (USC) [49] use 
histograms and point normal vectors to identify local features. Ensemble 
of Shape Functions (ESF) [13] uses distributions of distances, areas, and 
angles to identify objects. Principal Axes Descriptor [14] applies prin-
cipal component analysis and occupancy ratios to identify object types. 
Similarly, in [15,54], the authors used eigenvectors and eigenvalues to 
generate descriptors for cluster matching. In the Scan-vs-BIM context, 
existing descriptors can be material-based including colour, texture, and 
reflectivity [29], or shape-based including height, width, radius, and 
curvature [50,92], or some combination thereof. Some descriptors use 
heuristic models with human codification to identify or classify objects 
[16]. However, the specific attributes of an object descriptor restrict this 
approach to only being capable of DI-compliant cases for instance 
detection and segmentation in PCD. Relying solely on the descriptor is 
insufficient to address challenges in PCD with significant occlusions and 
clutter. Also, there is still a lack of leveraging IFC to develop a generic 
descriptor for instance matching in the Scan-vs-BIM context. 

2.4. Gaps in knowledge and objectives 

Structural object detection and segmentation in PCD in the Scan-vs- 
BIM context presents several gaps in knowledge:  

1. At present, there is still a lack of generic methods to accurately 
segment the entire cluster of valuable points while simultaneously 

Table 3 
SOTA deep-learning instance segmentation evaluated on S3DIS.  

Model mPrec mRec Reference 

TD3D 0.868 0.766 [37] 
MaskGroup 0.666 0.696 [38] 
SPFormer 0.740 0.711 [39] 
SoftGroup 0.753 0.698 [40]  
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eliminating noisy points in highly cluttered and obstructed envi-
ronments in the Scan-vs-BIM context. In certain situations, only a 
portion of an object’s surface is visible and can be captured in the 
PCD, and obstructions such as building materials or workers can 
further complicate the scanning result. Because of these difficulties, 
PCD captured in such complex environments may not accurately 
reflect the status of instances and can make it challenging to achieve 
high-precision instance segmentation and geometry reconstruction.  

2. We do not yet know how to segment the complete point cluster with 
a high-precision result when there are significant deviations in the 
position, orientation, and scale of the DI geometry and the actual 
object instances. Existing methods are unable to ensure the extrac-
tion of all relevant points corresponding to the object instance in the 
Scan-vs-BIM context.  

3. There is still a lack of generic methods to precisely segment the entire 
point cluster in non-Manhattan-world buildings in the Scan-vs-BIM 
context. Most methods focus on Manhattan-world buildings where 
objects are aligned with X-Y-Z axes. To the best of our knowledge, 
few methods can deal with matching as-designed diagonally posi-
tioned or curved walls with high-precision performance in PCD. 

4. We do not yet know how to precisely detect and segment the com-
plete point cluster for building object instances that have non- 
primitive shapes, such as cross piping joints, sprinklers, terminals, 
and light fixtures. The most existing methods are only effective for 
cuboid and cylindrical shapes in the Scan-vs-BIM context. 

The objective of this research is to develop an automatic high- 
precision method to match (detect and segment) as-designed planar, 

curved, and linear structural object instances in PCD. The matching 
result of point clusters can be used for progress monitoring and quality 
control at the construction and operation stages. More specifically, this 
work addresses gaps 1, 2, 3, and part of gap 4 above for structural objects 
in buildings. 

3. Proposed solution 

3.1. Scope and overview 

The scope of this research is limited to the most frequent planar, 
curved, and linear structural instances in a typical building. More spe-
cifically, we focus on planar walls, symmetrically curved walls, slabs 
including floors and ceilings, beams, and columns, since around 81.44% 
of the top frequent structural objects are from these classes [1]. 

The general thrust behind our proposed method is to follow a top- 
down idea to break the whole PCD as a high-level initial input into 
smaller, more manageable clusters in each step. We designed a recur-
sively narrowing-down segmentation algorithm to process clusters from 
each step to finally reach a high-resolution result of instance-level seg-
mentation. This method can reduce the information loss by clustering 
points with a necessary but not sufficient condition in each step. 

The workflow of the proposed method is illustrated in Fig. 1. We use 
acronyms to present inputs, intermediate outputs, and final outputs of 
each step. For example, {B|A} refers that B is a subset of A. The left part 
of the figure shows the inputs from the start and the outputs from the 
end along with the intermediate outputs of five process steps, while the 
right part of the figure elaborates on the process of each step within a 

Fig. 1. The workflow of the proposed method.  
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grep dash box. We require an IFC model and the coarsely aligned PCD, 
P0, as two kinds of data inputs from the beginning. More specifically, we 
determine the instance that we want to monitor and record this desig-
nated instance’s GUID as an input for the further process in Step 1 
(shown in magenta). On the other hand, the coarsely aligned PCD refers 
that the PCD scanned at the construction stage is coarsely aligned with 
the IFC model. This is data pre-processing and will be discussed later in 
the section of research methodology. The flowchart in blue on the left 
side of the figure shows the processes of the coarsely aligned PCD with a 
recursively segmenting algorithm from Step 2 to Step 5, with the support 
of the outcome of Step 1. More precisely, an object instance descriptor of 
the designated instance generated from an IFC model is used to support 
cropping PCD within an enlarged bounding box in Step 2, segmenting 
the remaining PCD into a fitted shape in Step 3, and optimizing the final 
output cluster in Steps 4 and 5. The final output at the end is the point 
cluster corresponding to the designated wall, column, beam, or slab 
instances. Each step will be illustrated in detail in the following sections. 

3.2. Generating object instance descriptor (step 1) 

To the best of our knowledge, most of the existing object descriptors 
extracted features of object classes or instances, and they were only 
created for the specific subject matters of research. We therefore pro-
posed a new descriptor named IFC-based Object Instance Descriptor 
(OID) that is more generic, standardised, and efficient to solve the 
matching problem in the Scan-vs-BIM context. We take advantage of IFC 
to calculate and encode a set of necessary variables which can support 
matching instances in the PCD since an input IFC model is a DI 
benchmark. 

We define an OID here as a data structure that encapsulates the 
properties associated with a specific instance of a building. We proposed 
two sub-descriptors, namely Geometry Descriptor (GD) and Relationship 
Descriptor (RD) to compose a complete OID, as shown in Eq. (1). GD 
refers to the geometric attributes that reflect the instance itself while RD 
refers to the interaction attributes that reflect the surrounding infor-
mation of the instance. We proposed these two sub-descriptors because 
we need the both of attributes’ information to help us segment the PCD 
when there are deviations in terms of position, orientation, and scale 
between the DI and as-built instances. 

OID =

[
GD 0
0 RD

]

(1) 

The structure of the proposed OID for supporting the matching 
process of DI planar, curved, and linear structural instances in the PCD is 
illustrated in Table 4. In the sub-descriptor of GD, we encode 1) the 
maximum and minimum XYZ coordinates of the axis-aligned bounding 
box, AABB, as it can help to set the parameters of an Enlarged Bounding 
Box (EBB) to crop PCD in Step 2; 2) the attribute of orientation, O, as it 
serves as a constraint to help determine the points corresponding to the 
as-designed shape in Step 3; 3) the primitive shape type, S, as it also 
serves as a constraint to help shape model detection in Step 3. Specif-
ically, we choose AABB rather than Oriented Bounding Box (OBB) 
because it is easier to compute the accurate value of {Xmin,Xmax,Ymin,Ymax,

Zmin, Zmax} for AABB without any other conditional inputs and is more 

generic to be applied on the instances with complex shapes. Fig. 2 shows 
two examples of AABB of two diagonally positioned walls, separately. A 
diagonally positioned wall refers to the wall that is still perpendicular to 
the X-Y plane, but the principal axis is not aligned with neither the X nor 
the Y axis. The attribute of orientation, O, refers to two different vari-
ables in different cases, namely, it represents a normal vector, n→, when 
the object instance is a wall and slab, while it represents a principal axis, 
a→, when the instance is a beam or column. Finally, we only consider two 
types of primitive shapes, namely, cuboid and cylinder, as they can be 
used to represent the geometry of the most frequent structural object 
classes for this research. 

In the sub-descriptor of RD, we define, compute, and encode three 
attributes, namely, Inner Connection Relation (ICR), Border Connection 
Relation (BCR), and Hierarchy Relation (HR). As discussed before, RD 
refers to the interaction attributes that reflect the surrounding infor-
mation of the instance, which is useful for optimizing the final point 
clusters in real, complex Scan-vs-BIM contexts. Specifically, ICR and 
BCR work for the point cluster optimization of walls, beams, and col-
umns, whereas HR works for slabs. Fig. 3 indicates one example of ICR 
between the targeted wall 0 and the connected wall 2, as well as three 
examples of BCR between the targeted wall 0 and the connected wall 1 
(in three cases). Precisely, we define ICR by first computing the 
maximum and minimum XY values of AABB of two related walls, and 
then discriminating ICR by the Eq. (2) shown below: 

∀AABBxy connected ∕∈
(
∀AABBxy+Δ

)
(2)  

where AABBxy connected refers to the XY value of AABB of the connected 
wall while AABBxy refers to the XY value of AABB of the targeted wall. 
We add a small tolerance, Δ, to improve the result’s robustness. Fig. 3 
indicates that the connected wall 2 has an ICR with the targeted wall 
0 since none of the vertices of wall 2’s AABB belongs to the threshold of 

Table 4 
The structure of the proposed IFC-based object instance descriptor (OID), including two sub-descriptors: geometry descriptor (GD) and relationship descriptor (RD).  

IFC-based object instance descriptor (OID) 

Sub-descriptor Acronym Explanation Description 

Geometry Descriptor (GD) 
O Orientation / Normal (i, j, k) 

AABB Axis Aligned Bounding Box {Xmin, Xmax, Ymin, Ymax, Zmin, Zmax} 
S Primitive Shape Type cuboid, cylinder 

Relationship Descriptor (RD) 
HR Hierarchy Relation IfcBuilding → IfcSpace → IfcInstance 
ICR Inner Connection Relation ∀AABBxy_connected ∕∈ (∀AABBxy+Δ) 
BCR Border Connection Relation ∃AABBxy_connected ∈ (∀AABBxy+Δ)  

Fig. 2. Two examples of axis-aligned bounding boxes of diagonally posi-
tioned walls. 
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vertices of wall 0’s AABB. Similarly, the discrimination of BCR follows 
the Eq. (3) below: 

∃AABBxy connected ∈
(
∀AABBxy+Δ

)
(3)  

which means that the connected wall 1 has a BCR with wall 0 since at 
least one vertex of wall 1’s AABB is within the threshold of vertices of 
wall 0’s AABB in Fig. 3. We only need to compute XY values from the top 
view to determine the connection relationship without considering Z 
values since the scope of this research is limited to the walls that are 
parallel to Z axis. We can also determine the connection relationship for 
beams and columns by Eqs. (2) and (3). On the other hand, we define HR 
as the affiliation relations between spaces and instances and use this 
relationship to help optimize the point clusters and remove noisy points 
in PCD for slabs. We use a backward reasoning method to determine the 
number of spaces from the related building elements including doors or 

walls. For example, in Fig. 4, IfcRelSpaceBoundary can be determined by 
the inverse attribute of IfcElement. The IfcSpace can then be determined 
by the attribute “Relating Space” of IfcRelSpaceBoundary. We will 
explain in detail about how to use RD to optimize the result in Step 5. 

In summary, our proposed OID has three benefits to support 
matching structural instances in the Scan-vs-BIM context: 1) the attri-
bute AABB in GD can support generating and modifying the EBB which 
is used for cropping the whole PCD into a small-scale, targeted cluster 
for subsequent object instance matching; 2) the attributes orientation 
and primitive shape type in GD can support detecting and extracting the 
points corresponding to the related shapes to narrow down the point 
clusters; 3) the RD can help to select the top clusters to optimize the final 
segmentation result; 4) the GD and RD can also support estimating 
artificial points to fill gaps in the point cluster (this benefit is out of this 
research scope). 

Fig. 3. Indication of inner connection relation (ICR) and border connection relation (BCR) in a Manhattan-Word case (wall 0, wall 1-case 2, and wall 2), and non- 
Manhattan-World cases (wall 1-case 1 and wall 1-case 3). 

Fig. 4. Indication of hierarchy relation (HR).  
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3.3. Narrowing down PCD with shape detection (step 2&3) 

As our proposed solution follows a recursively segmenting logic, we 
aim to narrow down the input PCD, P0, into smaller clusters step by step 
until find the optimized result. We first use an EBB to crop the entire PCD 
into a smaller cluster in Step 2 to narrow down the size of the PCD. This 
idea was inspired by the real cases in the Scan-vs-BIM context, where 
there are deviations in terms of position, orientation, and scale between 
DI and as-built instances. Using an EBB instead of an AABB to crop the 
input PCD can allow these deviations to exist, and at the same time, 
reduce the processing time caused by the input data size. Fig. 5 shows an 
example of an AABB and an EBB with a cuboid instance. We can take the 
value of the AABB from GD in Step 1 and extend the size of the AABB by 
around 20% to 50% to generate an EBB. Cropping an instance within an 
EBB allows an appropriate tolerance to let us determine the instance in 
the point cluster, but at the same time increase the existing probability 
of noisy points. 

We would like to segment the points, Pcrop, in the EBB with the 
support of the IFC model to further narrow down the size of PCD. Given 
the fact that the shape of an as-built structural instance is the same as the 
DI model, we can segment the cluster from Step 2 by fitting a primitive 
shape model. In this step, we aim to extract the representing points in a 
simple, fast, and easily implemented manner, therefore, we chose 
PROSAC here to fit the points with a given shape model because this 
algorithm can improve the speed of the process as well as keep the 
robustness of the result, especially for the dataset with a large number of 
noise or outliers. PROSAC is an enhanced variant of the RANSAC that 
incorporates prior knowledge in the form of point ranking for robust 
parameter estimation in the presence of many outliers. The fundamental 
principle behind PROSAC is that, given a set of data points where the 
quality ranking is known, it is statistically more probable for the better- 
ranked data points to be inliers than the ones ranked lower. Therefore, 
PROSAC begins by sampling only the top-ranked data points during its 
initial iterations, incrementally expanding the sampling base as the it-
erations progress. For shape fitting, the normal consistency between 
neighbouring points is considered a good metric. Points with a consis-
tent normal to their neighbours are ranked higher to consider for initial 
iterations of the shape estimation, leading to a more efficient result. 

We investigate two primitive shapes of the top common structural 
objects for segmenting PCD based on PROSAC: plane and cylinder, in 
Step 3, since cuboid and cylinder are two kinds of common geometry in 
the structural category. We use the model “plane” for cuboid detection 
(namely, planar walls, slabs, cuboid columns, and beams), and the 
model “cylinder” for curved edge or cylinder detection (namely, curved 
walls, cylindrical columns, and beams). Table 5 illustrates the type and 
the number of SAC models used in shape detection. The number of SAC 
models depends on the object types. Specifically, two planar surfaces are 
visible and captured in the scanned PCD for planar walls and slabs, so we 

need to detect two planes for these types of instances. Similarly, we need 
to detect four planes in the PCD cluster for cuboid columns and beams. 
Normal vectors of surfaces are estimated from GD in Step 1 to increase 
the robustness of the PROSAC algorithm. We only need to detect one 
cylinder for a cylindrical column or a beam with the radius value 
recorded in GD. Curved walls are more complex because we cannot use 
“plane” to detect the shape as planar walls. Since the curved wall is 
symmetrical, we can detect the curved two surfaces by detecting two 
cylinders. However, unlike cylindrical columns or beams that IFC has 
already recorded their radius attributes, few BIM models record the 
curvature of curved walls. For example, we usually do not know the 
radius and the centre of the curved wall in an IFC model. Therefore, we 
need to compute the radius of the curved surface for curved wall’s shape 
detection. 

The basic idea for estimating the curvature of a curved wall is to 
simulate a curved wall from the plan view as a circular arc of a circle and 
compute the radius and centre of this circle. Fig. 6(a) elaborates on how 
to simulate a curved wall in brown from the plan view into a circle and 
how to compute the centre and radius by three points on the circular arc 
with the help of the AABB. Specifically, we first compute the dimension 
of the curved wall’s AABB from the IFC model, and then compute the 
tangent and crossing points between the curved wall and the AABB 
based on the coordinates of the maximum X, minimum X, maximum Y, 
or minimum Y. We only select three pairs of coordinates of tangent or 
crossing points from the X-Y to compute the fitted circle’s centre and 
radius. The intersection of the two perpendicular bisectors of the lines 
with arbitrary two tangent or crossing points is the centre of the circle. 
Assuming three tangent or crossing points are A(x1, y1), B(x2, y2),

C
(
x3, y3

)
, the centre O(h, k) is: 

h =

(
x2

1 + y2
1

)
(y2 − y3) +

(
x2

2 + y2
2

)
(y3 − y1) +

(
x2

3 + y2
3

)
(y1 − y2)

2(x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) )
(4)  

k =

(
x2

1 + y2
1

)
(x3 − x2) +

(
x2

2 + y2
2

)
(x1 − x3) +

(
x2

3 + y2
3

)
(x2 − x1)

2(x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) )
(5) 

The radius is: 

r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x1 − h)2
+ (y1 − k)2

√

(6) 

In real-world cases, curved walls have various scales and orienta-
tions, which will lead to different cases of tangent and cross points in the 
AABB. We investigated all five cases from the plan view (X-Y plane) 
based on the orientation and scale of the curved wall in an IFC model to 
infer the radius value of the simulated circle. Fig. 6(b–f) illustrate five 
cases of an IFC curved wall from the plan view. Specifically, Fig. 6(b) 
shows a curved wall with the shortest length of the arc, we need to add 
an arbitrary point on the arc besides two crossing points to compute the 
radius. The rest four cases show different orientations and lengths of the 
arc, along with the determined tangent and crossing points for 
computing the radius value. 

In summary, Steps 2 and 3 aim to narrow down the whole PCD input 
into a small size point cluster and coarsely segment it by shape detection. 
It should be highlighted that all shapes defined here are infinite. 
Therefore, the PROSAC-based shape detection can only find the points 
corresponding to the required geometry in the EBB but cannot distin-
guish which point belongs to the selected instance and which point just 

Fig. 5. An example of an axis-aligned bounding box (AABB) in magenta on the 
left and an enlarged bounding box (EBB) in yellow on the right, for an object 
instance of a cuboid. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 

Table 5 
SAC models used for geometry detection in PCD.  

Instance class SAC model Quantity Estimated parameters 

planar wall/slab plane 2 normal vectors (i, j, k)
curved wall* cylinder 2 radius margin (rmin , rmax)

cylindrical column/beam cylinder 1 radius margin (rmin , rmax)

cuboid column/beam plane 4 normal vectors (i, j, k)

* Curved walls are more complex. Details are explained in the body paragraph. 
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Fig. 6. Curved walls in brown from the plan view (X-Y plane) in IFC models. (a): calculate the centre and the radius of the fitted circle. (b) - (f): five cases of a curved 
wall in an axis-aligned bounding box. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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belongs to the shape (e.g., noisy points) (Fig. 7). To solve this problem, 
we developed a DBSCAN-based cluster optimisation algorithm in Steps 4 
and 5 with the help of the RD to remove the noisy points and optimize 
the final segmentation result. 

3.4. Optimization with unsupervised clustering (step 4&5) 

PROSAC can only extract the points corresponding to the defined 
shape but not the points corresponding to the designated instance, as 

illustrated in Fig. 7. We need to segment the point cluster extracted from 
Step 3 and remove the noisy points to optimize the result. Furthermore, 
an instance can be represented by different numbers of point clusters 
due to various occlusions and clutter, we therefore apply DBSCAN to 
cluster points into different patches since DBSCAN is an unsupervised 
clustering algorithm which can identify clusters of arbitrary shapes and 
noise points without setting the number of clusters. The key step to 
obtain the desired clusters using DBSCAN is the setting of two param-
eters: the radius threshold, Eps, and the minimum number of neighbours 

Fig. 7. (a) narrowing PCD into an EBB for a planar wall; (b) & (c) the points of two surfaces extracted by plane shape detection, the points in the red circle belong to 
the wall itself, while the points in the blue circle just belong to the shape, considered as noisy points. 

Fig. 8. An example of how the ICR supports DBSCAN to rank clusters for the final points extraction. (The IFC model and PCD are from an open source [51]).  
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in a cluster, minPts. Specifically, the points classified into the same 
cluster should reflect a part of the specific instance, so the radius 
threshold should be larger than the density of PCD. Meanwhile, for each 
object, the reason for the existence of different clusters is due to the 
inner-connected instances (e.g., walls) or spaces that segment the PCD. 
Therefore, determining the thickness of the connected instances can 
help to set the radius threshold. In practice, due to scanning errors, 
density settings from the scanner, and scale discrepancies between the 
DI and as-built instances, it is optimal to adjust the setting of Eps based 
on the thickness values to achieve the best performance. For the mini-
mum number of neighbours in a cluster, minPts, compared to the PCD 
size of each instance, it can be set with a small number (e.g., 60–100) as 
a default to facilitate clustering and noise elimination. The point cluster 
can be split into different small clusters after applying DBSCAN in Step 
4, where we need to further determine which clusters belong to the 
instance itself. 

One instance may be represented by several different clusters in PCD 
because of occlusions and clutter from the connected instances. There-
fore, we take advantage of RD generated in Step 1 to help rank, select, 
and merge the top number of clusters in Step 5 for result optimization. 
Kd-tree is used here to accelerate the computation speed. More specif-
ically, we use ICR and BCR to rank the clusters for planar and curved 
walls; HR to rank the clusters for planar slabs including floors and 
ceilings. Since columns and beams are always built independently in a 
space such as a lobby or a room, we can directly segment the points by 
fitting models. 

Planar and curved walls. Fig. 8 uses an example of a planar wall to 
elaborate on how ICR and BCR help to rank and select clusters corre-
sponding to the instance as the final extraction result. In Fig. 8(a), the 
red-edged wall in the IFC model is the targeted planar wall, where the 
surfaces with white-dash lines are the targeted plane. The targeted wall 
has two BCR and one ICR with three adjacent walls. In Fig. 8(b), we crop 
the PCD by an EBB. Fig. 8(c) shows the result of applying PROSAC with 
the shape of “plane” for surface 1. It is obvious that the extracted plane 
contains some occlusions and clusters due to an open door, an inner 
connected wall, and a border-connected wall. Then we apply DBSCAN to 
cluster points into different clusters (Fig. 8(d)). We then rank the clusters 
by the number of points. We only select top (N(ICR) + 1) clusters as the 
final extracted point cluster, where NICR refers to the number of the ICR. 
We apply the same method for curved walls. The optimized result for a 

wall is shown below: 

P(I) wall =
∑(NICR+1)

1

(
Pcluster ∈ P(in)

)
(7) 

Slabs. Space enumeration over a slab is a key point in ranking and 
selecting clusters after DBSCAN. We take advantage of HR to inversely 
infer the number of spaces on a slab. Fig. 9 illustrates two examples of 
using walls (left) and doors (right) to infer IfcSpace in an IFC model. We 
only select top (N(HR)) clusters as the final extracted point cluster, where 
N(HR) refers to the number of spaces in the HR. The optimized result for a 
slab is shown below: 

P(I) slab =
∑(NHR)

1

(
Pcluster ∈ P(in)

)
(8) 

Columns and beams. Usually, we do not need to select clusters for 
columns and beams as they are always built without any ICR or HR. In a 
few cases, we can apply ICR to select top clusters for result optimization 
if columns or beams have intermediately connected with other in-
stances. Despite all that, there are always some signs and marks on the 
columns and beams in real-world cases, which can cause false positive 
results after applying PROSAC in Step 3. For example, Fig. 10(a) shows a 
sign of fire exit on a column, of which the points can also be extracted 
from PROSAC. We then proposed a size restraint algorithm to remove 
these noisy points and optimize the result. Fig. 10(b) illustrates the 
proposed size restraint algorithm. We first compute two distances (m 
and n) from two parallel planes from the plan view, separately. Then we 
compute dmax as the longest distance from the central point, which 
serves as the threshold to select candidates and remove noisy points. The 
proposed size restraint algorithm is robust for the real-world dataset 
since it does not rely on the instance scale of the as-designed model. It 
should be noted that this algorithm is effective when none of the four 
surfaces of the column is completely occluded by clutter. In other words, 
all four surfaces of the column need to be at least partially exposed to 
help determine the distances between two pairs of parallel faces from a 
top-down perspective. On the other hand, we do not need to apply this 
size restraint on cylindrical columns and beams but only need to use the 
ICR to optimize the result if applicable. The optimized result for a col-
umn or beam is shown below: 

Fig. 9. An example of the HR between spaces and walls (left) / doors (right) in an IFC model. (The model is from an open source [51]).  
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P(I) column/beam =
∑(NICR+1)

1

(
(Pcluster|size restraint) ∈ P(in)

)
(9)  

3.5. Pseudo code and summary 

Overall, the pseudo-code of matching design-intent planar, curved, 
and linear structural objects in PCD is proposed in Algorithm 1. At the 
beginning, for each selected instance in the IFC model, M, we use its 
GUID, I, to compute the object instance descriptor, OID. Specifically, if 
the GUID belongs to the object classes of walls, columns, and beams, we 
then compute the values of attributes for GD, ICR, and BCR; otherwise, if 
the instance belongs to the slabs, we compute the attributes’ values for 
GD and HR. Afterwards, an EBB is computed from the attribute’s value 
of the AABB to crop and reduce the size of the entire PCD. Then, the 
PROSAC shape fitting is conducted by determining the inlier points, 
P(in), with the parameter hypothesis, P(h), of the designated shape, S, and 
the deviation value, ε. After that, DBSCAN is applied to divide the point 
cloud, P(in), into different clusters, Cm, by finding the neighbours of core 
points. Each cluster, Ci, is ranked by the number of points in descending 
order. Finally, the top (N(ICR) + 1) of clusters are selected and merged as 
the final segmentation result, P(I), for walls, columns, and beams; the top 
(N(HR)) of clusters are selected and merged as the final segmentation 
result for slabs. Our proposed method has some advantages compared 
with the SOTA methods: 1) An EBB is generated to crop the whole PCD, 
which can reduce the size of the input data into a small-scale cluster to 
decrease the computational complexity. 2) The bounding box is 
enlarged to make the method robust when there are distinct deviations 
in terms of position, orientation, and scale between the DI model and the 
as-built PCD. 3) The proposed method is robust for analysing raw PCD 
directly without any pre-processing or denoising. 4) The proposed 
method is robust for highly occluded PCD with clutter. 5) Compared 
with deep learning-based methods, the proposed method avoids the 
problem of a lack of training datasets and can directly identify the 
instance ID to facilitate progress monitoring and quality control. 

Algorithm 1. Pseudo code for the proposed method.  

Fig. 10. (a) An example of signs and marks on the column in a real point cloud cluster; (b) the plan view of four surfaces (solid black lines) fitting the point cluster 
(grey dots) of the as-built column, dmax is computed by surface distances as size restraint. 
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4. Research methodology 

4.1. Data acquisition and pre-processing 

We acquired five datasets shown in Table 6 to validate our proposed 
method. Each dataset contains an as-designed IFC model and an as-built 
PCD of buildings from the real world. The IFC models reflect both 
Manhattan-World and non-Manhattan-World buildings. The character-
istics of PCD from the selected five datasets are summarised in Table 7. It 
is noted that both mobile and terrestrial scanners were used to collect 
points. Five datasets contain different numbers of points and various 
complexities of clutter and occlusions, which is suitable for evaluating 
our proposed method. 

ISPRS (International Society for Photogrammetry and Remote 
Sensing) WG IV/5 Benchmark on Indoor Modelling contains six pairs of 
public datasets with different complexities [51,52]. We selected three 
datasets with different building styles, point scales, and clutter com-
plexities from the ISPRS benchmark. First, the PCD of the TUB2 dataset 
was captured by Zeb-Revo in a two-floor building at Technische Uni-
versität Braunschweig in Germany. The indoor scene comprises a total of 
24 rooms on two floors which are enclosed by walls and ceilings with 
different thicknesses and heights. It also contains 51 open and closed 
doors and 21 windows. The building is not furnished. Second, the PCD of 
the UVigo dataset represents one room and an entrance hall captured at 
the University of Vigo in Spain. The scene contains one curtain wall, 20 
windows and 7 open and closed doors. The scene also contains several 
columns with a circular cross-section and multiple rectangular surfaces. 
Third, the PCD of the GM dataset was captured in the Grainger Museum. 
This is a non-Manhattan-World building with many curved and diago-
nally positioned walls. Two further complex datasets were also produced 
from the real world. The PCD of Cambridge CEB was captured in the 
Civil Engineering Building (CEB) at the University of Cambridge with a 
FARO Focus 3D X330 Terrestrial Laser Scanner. It contains three floors 
with many furnished spaces. The PCD of ConSLAM was captured on a 
construction site at Whiteley’s building in London. It contains columns 
with a rectangular cross-section. Overall, the geometry deviations of 
object instances in terms of position, orientation, and scale exist be-
tween each IFC model and its corresponding PCD in five datasets. As can 
be seen in Table 7, the levels of clutter and occlusions in the PCD of the 
GM, CEB, and ConSLAM datasets are relatively high. 

We need to register the as-built PCD with its corresponding as- 
designed IFC model before matching DI instances in PCD. The prob-
lem can be described as follows: 

pi = Rmi + t+Vi (10)  

where pi refers to the points in the PCD and mi refers to the points in the 
model, i = 1,2, 3…, n. R is a rotation matrix and t is the 3D translation 
vector. Vi is the noise vector representing the discrepancy after the 
coarse alignment by R and t. Vi can be considered as a slight movement 
for registration refinement to minimize the discrepancy between the 
transformed DI and the PCD. In this research, coarse registration is 
applicable as deviations are allowed between the as-designed BIM and 
the as-built PCD. We proposed two efficient methods for IFC to PCD 
coarse registration, summarised in Table 8. The first utilizes Recap for 

coordinate system adjustment while the second calculates the registra-
tion matrix in CloudCompare. We applied Method 1 to datasets TUB2, 
UVigo, GM, and CEB, and Method 2 to ConSLAM. Fig. 11 showcases the 
registration results. Both methods aim to adjust the coordinate system of 
PCD, using the IFC as a reference. Method 1 is more convenient when the 
IFC’s coordinate origin and the axis direction are easy to find, while 
Method 2 is more reliable when the IFC is too complex to locate the 
coordinate origin and the axis direction. The results of the two methods 
show little difference towards the coarse registration in this study. 

4.2. Experimental results 

We did experiments on the five datasets to evaluate the proposed 
method. For each class of the structural category, we selected several 
representative instances from five datasets. Specifically, we selected 
eight planar walls from TUB2, Uvigo, GM, and CEB datasets, where four 
of them were built in Manhattan-World type and four of them were in 
non-Manhattan-World type. Each planar wall has different complexities 
in terms of occlusions and clutter caused by doors, windows, furniture, 
and sundries. We also selected four curved walls and four slabs from GM, 
TUB2, UVigo, CEB, and ConSLAM datasets, including both Manhattan 
and non-Manhattan types. Besides the occlusions and clutter mentioned 
before, different curved walls have different constant curvatures, and 
the slabs have various shapes from the plan view. Finally, we selected 
five columns including both cylindrical and cuboid geometry from 
UVigo and ConSLAM datasets. In addition to the numerous occlusions 
and clutter, the as-designed models are quite different from the as-built 
columns in terms of dimensions and positions. In summary, we chose a 
wide range of planar, curved, and linear instances with different com-
plexities to validate the proposed method’s efficiency and reliability in 
automating the process of matching. 

Having discussed the variety and complexity of the selected in-
stances, we implemented the proposed method in algorithms written by 
C++ and Python with Point Cloud Library (PCL) [69] and IfcOpenShell. 
As Section 3.4 explained the process of setting DBSCAN’s parameters for 
clustering, we computed the minimum thickness of the connected walls 
in IFC models for the selected instances and set a value slightly below 
this as the radius threshold. Specifically, for planar walls and slabs, Eps 
was set around 0.1 m for all datasets; for curved walls, Eps was set 
around 0.6 m in the GM dataset. The density of PCD in the GM dataset is 
sparser and the connected walls are thicker than other datasets, so the 
Eps is larger than others. All settings are larger than the PCD’s density. It 
was not applied to columns since there are no inner connections. The 
value of minPts was set as 60 to cluster the noisy points. Fig. 12 dem-
onstrates the most representative experimental results. Specifically, the 
Figure shows, from left to right, the as-designed model (IFC instance), 

Table 6 
Real world datasets used to validate the proposed method.  

Dataset Reference Manhattan type Sensor 

ISPRS WG IV/5-TUB2 [51] Yes Zeb Revo 
ISPRS WG IV/5-UVigo [51] Yes UVigo Backpack 
ISPRS WG IV/5-GM [51,52] No Zeb Revo RT 
Cambridge CEB self- 

collection 
No* FARO Focus 3D X330 

ConSLAM [53] Yes Velodyne VLP-16  

* Although CEB itself is a Manhattan-World building, the coordinate system is 
not aligned with CEB, making it processed as a non-Manhattan-World building. 

Table 7 
PCD characteristics for the five datasets used in this study.  

Dataset(abbr.) * Scanner type No. of points Clutter & occlusions 

TUB2 Mobile 21.6×106 Low 
UVigo Mobile 14.9×106 Moderate 
GM Mobile 28.9×106 High 
CEB Terrestrial 37.9×107 High 
ConSLAM Mobile 15.8×107 High  

* Using abbreviations for the selected datasets. 

Table 8 
Proposed solutions for IFC to PCD coarse registration.  

Method Step Action Software File 

1 1 determine coordinate origin & 
direction 

Solibri IFC 

2 adjust coordinate origin & direction Recap PCD 
2 1 convert IFC file to OBJ file IfcConvert IFC 

2 select 4 pairs of corresponding points CloudCompare both  
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the EBB, the result of the extracted point cluster, and the ground truth. 
The left column of the figure illustrates the selected IFC instance in red 
from DI, which is used to compute OID. The second column of the figure 
illustrates the cropped PCD within the EBB. The following column shows 
the point cluster of instance matching results after applying the pro-
posed method. The right column shows the ground truth of the instance 
point cluster which was generated from the PCD manually. Specifically, 
TUB2-PW2 shows the segmented result when there are two inner con-
nections on one surface of the wall. GM-PW5 shows the result of a non- 
Manhattan planar wall with significant clutter and occlusions. For GM- 
CW1, there are 4 thin planar walls in grey connected to one surface of 
this curved wall, which are considered as the border connection since 
they are very close to the boundary of CW1. For GM-CW4, it contains 
significant clutter and one inner connection for one surface of the wall. 
TUB2-S1 shows the segmented result of the slab connecting two floors. 
ConSLAM-RC2 shows the segmented result when there are signs and 
clutter on the column. Finally, ConSLAM-RC4 shows a successful seg-
mentation result when there is a distinct scale deviation. 

Throughout our experiments, we applied our proposed method to a 
total of 8 planar walls, 4 curved walls, 4 slabs, and 5 columns with 
different complexities in PCD. The overall experimental results and vi-
sual representations are presented in Appendix Figs. 13–15. In conclu-
sion, the experimental visualization presents a good result in real-world 
datasets for matching structural objects in the scan-vs-BIM environment 
with significant occlusions, clutter, deviations, and scales. 

5. Discussion 

5.1. Evaluation metrics and the ground truth 

We applied a point-to-point comparison method to evaluate the 
experimental results against the ground truth (Please see the overall 
experimental results and visualization representations in Appendix 
Figs. 13–15). We first assigned a unique label to each point besides the X, 
Y, Z coordinates before computing the result cluster and generating the 
ground truth cluster. Then, we matched each pair of corresponding 

Fig. 11. The as-designed IFC model (left), the corresponding as-built PCD (middle), and the coarse registration result (right) for the five datasets.  
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points between these two sets of point clusters to compute Precision, 
Recall, and IoU. This evaluation method is more accurate than the 
surface-to-surface comparison since it computes the correspondence 
directly, rather than after transforming the points to surfaces. The 
metrics formulas are shown below: 

Precision = TP/(TP+ FP) (11)  

where TP refers to true positive and FP refers to false positive. 

Recall = TP/(TP+ FN) (12)  

where FN refers to false negative. 

IoU = TP/(TP+ FP+ FN) (13) 

Fig. 12. The representative selection of PCD matching results for planar walls (PW), curved walls (CW), Slabs (S), and cuboid columns (RC). From left to right: the 
selected IFC instance in red; the cropped PCD within the enlarged bounding box; the result of extracted point cluster using the proposed method; the manually 
generated ground truth. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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The evaluation between the result and the ground truth is shown in 
Tables 9 and 10. The overall mean precision is over 0.962, the mean recall 
is over 0.934, and the mean IoU is over 0.914. Overall, our proposed so-
lution is robust with high precision and recall on planar, curved, and linear 
structural instance segmentation in the Scan-vs-BIM context with various 
complexities. To the best of our knowledge, the proposed method is a 
novel workflow, and no similar method has been proposed before. 

5.2. SOTA method comparison 

In this section, we aim to compare the performance of our proposed 
method with the SOTA methods to demonstrate its superior performance 
in real-world, complex environments. Previously, we introduced and 
summarised five SOTA method types in the Scan-vs-BIM context in 
Section 2.1 Table 1. To improve the SOTA methods’ capability and 
robustness in different cases, we here merged Point-to-Point and Point- 
to-Surface methods as the improved SOTA method 1, and the last two 
methods (Feature-based and RANSAC-based methods) as the improved 

SOTA method 2 We do not consider Hough transform in evaluation since 
this method is only applied for cylinder detection, and sensitive to the 
noisy PCD with high occlusions and clutter. 

Specifically, for SOTA method 1, we directly selected the points 
within a threshold from the surface after calculating the nearest distance 
between the as-built PCD and the centre of the as-designed model. For 
SOTA method 2, we used normal vector, shape, and length information 
together with RANSAC to select points from the as-built PCD. The 
improved SOTA methods can have a more stable performance in 
different scenarios from real-world datasets. Hence, the comparison 
results can be more convincing to prove the better performance, feasi-
bility, and robustness of our new proposed method. 

We conducted the comparison experiments from two perspectives: 
instance types and deviation scenarios, because we want to understand 
the SOTA method’s performance towards 21 instances as we used for 
validating our proposed method, and the SOTA method’s performance 
with different deviation scenarios in terms of position, orientation, and 
scale. Table 11 shows the matching evaluation results based on different 
instance types. Two SOTA methods perform fairly when detecting slabs. 
SOTA method 1 is better for column and beam segmentation in precision 
while SOTA method 2 performs better for planar wall and slab seg-
mentation. SOTA method 2 has better overall performance in mIoU. 
Both two SOTA methods cannot deal with curved walls directly since the 
geometry information is not complete and cannot be extracted directly 
from the original IFC model. On the other hand, the SOTA method’s 
performances in different deviation scenarios in terms of scale, orien-
tation, and position also need to be evaluated. These scenarios often 
happen in the real-world context and our proposed solution can perform 
well towards these situations. Table 12 shows the evaluation results for 
both SOTA methods against the ground truth in four scenarios: 1) the 
IFC instance model is directly aligned with PCD; 2) the IFC instance 
model is reduced to around 25% smaller scale compared with the as- 
built instance; 3) the IFC instance model is rotated approximately 20◦

from the as-built instance; 4) the IFC instance model is moved around 
20% from the original position. Finally, Table 13 compares the mean 
precision, mean recall, and mean IoU between the proposed method and 
improved SOTA methods. It is evident that our proposed solution per-
forms much better than SOTA methods in all cases. 

5.3. Strengths and limitations 

Our proposed method offers several advantages over existing SOTA 
approaches. First, we apply an EBB to crop the whole PCD, which can 
reduce the data size and computational complexity, as well as enhancing 
the method’s robustness against position, orientation, and scale de-
viations between the DI model and as-built PCD. Second, the method 
does not require any pre-processing, such as denoising, for the raw PCD; 
it is adept at handling PCDs with significant occlusions and clutter for 
both Manhattan and non-Manhattan-Word buildings. Lastly, unlike deep 
learning techniques, our method does not require extensive training 
datasets; it can directly segment PCDs on the instance level and identify 

Table 9 
Matching result evaluation by instance code: proposed method vs the ground 
truth (PW: planar wall, CW: curved wall, S: slab, CC: cylindrical column, RC: 
rectangular column).  

Instance code Precision Recall IoU 

PW1 0.999 0.964 0.964 
PW2 0.991 0.928 0.921 
PW3 0.989 0.932 0.923 
PW4 0.978 0.967 0.947 
PW5 0.948 0.931 0.890 
PW6 0.964 0.979 0.944 
PW7 0.993 0.953 0.947 
PW8 0.971 0.958 0.931 
CW1 0.945 0.907 0.862 
CW2 0.920 0.890 0.823 
CW3 0.952 0.880 0.843 
CW4 0.947 0.894 0.851 
S1 0.997 0.916 0.913 
S2 0.999 0.979 0.978 
S3 0.997 0.886 0.884 
S4 0.986 0.955 0.942 

CC1 0.987 0.905 0.895 
RC1 1.000 0.985 0.984 
RC2 0.989 0.998 0.988 
RC3 0.995 0.943 0.939 
RC4 0.992 0.942 0.935  

Table 10 
Matching result evaluation by instance type: proposed solution vs ground truth.  

Instance type mPrecision mRecall mIoU 

Planar wall 0.979 0.952 0.933 
Curved wall 0.941 0.893 0.845 

Slab 0.995 0.934 0.929 
Column & Beam 0.993 0.955 0.948 

All 0.962 0.934 0.914  

Table 11 
Matching result evaluation by instance type: improved SOTA method 1, 
improved SOTA method 2 vs ground truth.  

Instance 
type 

SOTA method 1 SOTA method 2 

mPrecision mRecall mIoU mPrecision mRecall mIoU 

Planar wall 0.641 0.579 0.498 0.647 0.452 0.410 
Curved wall / / / / / / 

Slab 0.873 0.606 0.537 0.983 0.664 0.658 
Column & 

Beam 
0.834 0.369 0.363 0.791 0.525 0.502 

All 0.783 0.518 0.466 0.807 0.547 0.532  

Table 12 
Matching result evaluation by scenarios: improved SOTA method 1, improved 
SOTA method 2 vs ground truth.  

Scenarios SOTA method 1 SOTA method 2 

mPrecision mRecall mIoU mPrecision mRecall mIoU 

IFC aligned with 
PCD 

0.852 0.777 0.689 0.806 0.696 0.662 

IFC scaled ~25% 0.899 0.576 0.530 0.827 0.481 0.460 
IFC oriented 

~20◦

0.551 0.296 0.269 0.722 0.488 0.473 

IFC moved 
~25% 

0.829 0.421 0.376 0.873 0.523 0.498 

All 0.783 0.518 0.466 0.807 0.547 0.523  
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instance IDs by leveraging IFC models in the Scan-vs-BIM context. With 
the high-precision result of instance matching, the proposed method can 
be employed for construction progress monitoring and quality control 
for project management. 

Although our method performs high-precision results, there are 
several factors that can influence instance segmentation in the Scan-vs- 
BIM environment. First, too large intervals among scanned points can 
cause false negative results when segmenting point clusters. For 
example, in our cases, points for planar walls will be considered as noise 
and removed if the distance is larger than around 0.1 m based on 
experience, the right part of TUB2-PW2’s result cluster in Fig. 12 is an 
example. This situation typically arises when the distance between the 
scanner and the object is considerable. Due to the limited precision of 
the scanner and the increased scanning distance, the sampled points 
become sparse and can be possibly detected as noise by our method. 
Second, two instances with seamless and smooth surfaces from IFC 
models are not easily distinguishable in PCDs and thus will cause false- 
positive segmentation results. Additionally, for cuboid columns, the size 
restraint algorithm may not be effective in removing points of signs if 
one surface of a column is completely occluded and this surface cannot 
be detected in PCD. This can lead to false positive results. Finally, the 
floor junction may also be included during segmenting if the edge of an 
interior wall does not connect to another wall, leading to false positive 
results. A potential solution is to first determine whether the wall’s edge 
connects to another wall; if not, further segmentation methods need to 
be developed to address this problem. 

6. Conclusion 

This paper first examines the current SOTA methods with their 
strengths and limitations in detecting and segmenting structural object 
instances from PCD in the Scan-vs-BIM context. Such insights are helpful 
for future researchers aiming to further improve on these methods. 
Subsequently, we proposed a novel method that can rapidly, efficiently, 
and precisely segment common planar, curved, and linear structural 
instances from PCD in complex and real-world environments. For the 
academic contributions, the proposed method exhibits robustness in 
scenarios where: 1) the input PCD contains numerous occlusions and 
clutter; 2) the as-built object instances have significant deviations from 
the as-designed model in terms of position, orientation, and scale; 3) the 
as-designed or as-built are Manhattan-world buildings or non- 
Manhattan-world buildings. The proposed method following a top- 
down idea enhances the current SOTA in computer vision-based 
instance matching in the Scan-vs-BIM context. It has wide-ranging 

academic implications for studies in similar or allied domains, and 
potentially can act as a benchmark for upcoming research. For practical 
contributions, the automation of DI instance matching in PCD can 
significantly reduce manual checking time, leading to faster project 
progress monitoring and quality control at the construction stage. As this 
matching algorithm can be implemented at different timestamps during 
the building’s construction, the discrepancies between DI and as-built 
status can be detected and reported timely. It can help avoid costly 
rectifications in the later stages of construction. Finally, the matching 
result can aid in the updating of DT for infrastructure, which is crucial 
for modern facility management and predictive maintenance. 

In future research directions, standardising the matching solution for 
complex mechanical and electrical instances will broaden the method’s 
applicability. The automation of matching DI top frequent object classes, 
including pipe segments, duct segments, pipe joints, terminals, and 
lighting fixtures, will make the method more generic to support the 
geometric DT’s maintenance. Also, optimizing or automating the 
registration process of complex PCD with its respective DI file can 
enhance the congruence between the physical and digital realms. Lastly, 
addressing the inconsistencies such as gaps and truncation in extracted 
point clusters will lead to more refined models for streamlining the 
process of updating geometric DTs. For future potential applications, the 
proposed method integrated with the updated DT can aid in monitoring 
construction progress, identifying discrepancies early, and ensuring 
adherence to design specifications. Building managers can utilize the 
method to maintain up-to-date DT of facilities, helping in predictive 
maintenance and space optimization. Furthermore, updating a geo-
metric DT automatically and dynamically can foster better collaboration 
between architects, engineers, and construction professionals, ensuring 
everyone works from the most accurate and up-to-date data during a 
building’s lifecycle. 

Declaration of Competing Interest 

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing interests: 

Zhiqi Hu reports financial support was provided by European Com-
mission. Zhiqi Hu reports a relationship with European Commission that 
includes: funding grants. 

Data availability 

The authors do not have permission to share data. 

Acknowledgement 

This work is funded by the European Commission’s Horizon 2020 for 
the CBIM (Cloud-based Building Information Modelling) European 
Training Network under the Marie Skłodowska-Curie grant agreement 
No. 860555.  

Appendix A. Visualization of all matching results (Figs. 13–15) 

Table 13 
Matching result evaluation: improved SOTA methods vs our proposed method.  

Methods mPrecision mRecall mIoU 

Improved SOTA method 1 0.783 0.518 0.466 
Improved SOTA method 2 0.807 0.547 0.523 

Our proposed method 0.962 0.934 0.914  
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Fig. 13. PCD matching results for planar walls (PW).   
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Fig. 14. PCD matching results for curved walls (CW) and slabs (S).   
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Fig. 15. PCD matching results for cylindrical columns (CC) and cuboid columns (RC).  
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